The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity

نویسندگان

  • Wei Yan
  • Yongsheng Li
  • Xingyu Yang
چکیده

This paper is concerned with the Cauchy problem of the modified Kawahara equation. By using the Fourier restriction norm method introduced by Bourgain, and using the I-method as well as the L 2 conservation law, we prove that the modified Kawahara equation is globally well-posed for the initial data in the Sobolev space H s (R) with s > − 3 22 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low regularity solution of a 5th-order KdV equation

The Kawahara and modified Kawahara equations are fifth-order KdV type equations and have been derived to model many physical phenomena such as gravitycapillary waves and magneto-sound propagation in plasmas. This paper establishes the local well-posedness of the initial-value problem for Kawahara equation in H(R) with s > − 4 and the local well-posedness for the modified Kawahara equation in H(...

متن کامل

Low regularity solutions of two fifth-order KdV type equations

The Kawahara and modified Kawahara equations are fifth-order KdV type equations and have been derived to model many physical phenomena such as gravitycapillary waves and magneto-sound propagation in plasmas. This paper establishes the local well-posedness of the initial-value problem for Kawahara equation in H(R) with s > − 4 and the local well-posedness for the modified Kawahara equation in H(...

متن کامل

The low regularity global solutions for the critical generalized KdV equation

We prove that the Cauchy problem of the mass-critical generalized KdV equation is globally well-posed in Sobolev spaces Hs(R) for s > 6/13; we require that the mass is strictly less than that of the ground state in the focusing case. The main approach is the “I-method” together with some multilinear correction analysis. The result improves the previous works of Fonseca, Linares, Ponce (2003) an...

متن کامل

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations

In this paper we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term f(u) = λ|u|αu. We show that low regularity of f (i.e., α > 0 but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011